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Fundamental overview

CELL
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+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says: 

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology. 

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.
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+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says: 

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology. 

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
   struct cell *car;
   struct cell *cdr;
} cell, *any;

Yes, two identical types
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+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says: 

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology. 

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
   struct cell *car;
   struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values
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+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says: 

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology. 

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
   struct cell *car;
   struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values

Yes, cells are everywhere



  7

+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says: 

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology. 

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
   struct cell *car;
   struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values

Yes, cells are everywhere

// src/pico.h
typedef struct heap {
   cell cells[CELLS];
   struct heap *next;
} heap;
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+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says: 

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology. 

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
   struct cell *car;
   struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values

Yes, cells are everywhere

// src/pico.h
typedef struct heap {
   cell cells[CELLS];
   struct heap *next;
} heap;

                      cell
                        |
            +-----------+-----------+
            |           |           |
         Number       Symbol       Pair
                        |
                        |
   +--------+-----------+-----------+
   |        |           |           |
  NIL   Internal    Transient    External

Cells in heap under
full control by GC
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Fundamental overview

LIST
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                      cell
                        |
            +-----------+-----------+
            |           |           |
         Number       Symbol       Pair
                        |
                        |
   +--------+-----------+-----------+
   |        |           |           |
  NIL   Internal    Transient    External

A list is not part of data type hierarchy.
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                      cell
                        |
            +-----------+-----------+
            |           |           |
         Number       Symbol       Pair
                        |
                        |
   +--------+-----------+-----------+
   |        |           |           |
  NIL   Internal    Transient    External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs), holding 
numbers, symbols, or cons pairs. 

     |
      V
      +-----+-----+
      | any |  |  |
      +-----+--+--+
               |
               V
               +-----+-----+
               | any |  |  |
               +-----+--+--+
                        |
                        V
                        ...
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                      cell
                        |
            +-----------+-----------+
            |           |           |
         Number       Symbol       Pair
                        |
                        |
   +--------+-----------+-----------+
   |        |           |           |
  NIL   Internal    Transient    External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs), holding 
numbers, symbols, or cons pairs. 

CAR CDR
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                      cell
                        |
            +-----------+-----------+
            |           |           |
         Number       Symbol       Pair
                        |
                        |
   +--------+-----------+-----------+
   |        |           |           |
  NIL   Internal    Transient    External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs), holding 
numbers, symbols, or cons pairs. 

List is like wagon train
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                      cell
                        |
            +-----------+-----------+
            |           |           |
         Number       Symbol       Pair
                        |
                        |
   +--------+-----------+-----------+
   |        |           |           |
  NIL   Internal    Transient    External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs), 
holding numbers, symbols, or cons pairs. 

Remember!

+---+---+    +---+---+
| 1 | --+--->| 2 |---+---> NIL
+---+---+    +---+---+

+---+---+  
| 1 | 2 |
+---+---+

This is a list
if CDR of last cell

points to NIL

If atom in CDR then this is a dotted pair 
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Construct and view
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$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
: 
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$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
: 

CONStruct a cell or sequence of cells are straightforward.
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$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
: 

Construct a cell or sequence of cells are straightforward.

Function view will help understand cell structure:

: (cons 1 2)
-> (1 . 2)
: (view @)
+-- 1
|
2
-> 2
:
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$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
: 

Construct a cell or sequence of cells are straightforward.

Function view will help understand cell structure:

: (cons 1 2)
-> (1 . 2)
: (view @)
+-- 1
|
2
-> 2

Legend:
+ is CELL
- is CAR
| is CDR

: (cons 1 2 3)
-> (1 2 . 3)
: (view @)
+-- 1
|
+-- 2
|
3
-> 3
: (list 1 2 3)
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL
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$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
: 

Construct a cell or sequence of cells are straightforward.

Function view will help understand cell structure:

: (cons 1 2)
-> (1 . 2)
: (view @)
+-- 1
|
2
-> 2
: (cons 1 2 3)
-> (1 2 . 3)
: (view @)
+-- 1
|
+-- 2
|
3
-> 3
: (list 1 2 3)
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL

After practice you will manipulate and view structures in mind.
Nothing special, right?

Legend:
+ is CELL
- is CAR
| is CDR
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Modify CAR
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The PicoLisp reference for function set says: 

(set 'var 'any ..) -> any 

Stores new values any in the var arguments.
See also setq, val, swap, con and def. 
: (set 'L '(a b c)  (cdr L) 999)
-> 999
: L
-> (a 999 c) Variable: Either a symbol

or a cons pair 

http://software-lab.de/doc/refS.html#setq
http://software-lab.de/doc/refV.html#val
http://software-lab.de/doc/refS.html#swap
http://software-lab.de/doc/refC.html#con
http://software-lab.de/doc/refD.html#def
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The PicoLisp reference for function set says: 

(set 'var 'any ..) -> any 

Stores new values any in the var arguments.
See also setq, val, swap, con and def. 
: (set 'L '(a b c)  (cdr L) 999)
-> 999
: L
-> (a 999 c)

In case of cell it modify CAR:

$ pil +
: (set 'L (cons 1 2))
-> (1 . 2)
: (set L 3)
-> 3
: L
-> (3 . 2)
: (set L (cons 1 2)) 
-> (1 . 2)
: L
-> ((1 . 2) . 2)

http://software-lab.de/doc/refS.html#setq
http://software-lab.de/doc/refV.html#val
http://software-lab.de/doc/refS.html#swap
http://software-lab.de/doc/refC.html#con
http://software-lab.de/doc/refD.html#def
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Modify CDR
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The PicoLisp reference for function con says: 
(con 'lst 'any) -> any 

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc. 
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc
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Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says: 

(con 'lst 'any) -> any 

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc. 
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc
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Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says: 

(con 'lst 'any) -> any 

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc. 
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

: (set 'L (list 1 2 3))
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL
: (con L 22)
-> 22
: (view L)
+-- 1
|
22
-> 22

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc
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Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says: 

(con 'lst 'any) -> any 

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc. 
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

: (set 'L (list 1 2 3))
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL
: (con L 22)
-> 22
: (view L)
+-- 1
|
22
-> 22

Access path to two wagons is lost 
and they will be GC eventually

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc
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Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says: 

(con 'lst 'any) -> any 

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc. 
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

: (set 'L (list 1 2 3))
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL
: (con L 22)
-> 22
: (view L)
+-- 1
|
22
-> 22

Any destructive functions behaves the same way.
No dark corners anymore.

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc
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Now you have everything to understand listing of destructive function chain:

$ pil +
: (make (link 1 2) (view (made)) (chain 3) (view (made)))
+-- 1
|
+-- 2
+-- 1
|
+-- 2
|
3
-> (1 2 . 3)
: (make (link 1 2) (view (made)) (chain (cons 3)) (view (made)))
+-- 1
|
+-- 2
+-- 1
|
+-- 2
|
+-- 3
-> (1 2 3)
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Happy coding!
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