

Cells in PicoLisp

Idea: @tankf33der
Review: @Regenaxer
Revision: 24

June 2020
CC0

1

 2

Fundamental overview

CELL

 3

+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says:

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology.

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

 4

+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says:

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology.

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
 struct cell *car;
 struct cell *cdr;
} cell, *any;

Yes, two identical types

 5

+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says:

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology.

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
 struct cell *car;
 struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values

 6

+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says:

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology.

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
 struct cell *car;
 struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values

Yes, cells are everywhere

 7

+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says:

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology.

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
 struct cell *car;
 struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values

Yes, cells are everywhere

// src/pico.h
typedef struct heap {
 cell cells[CELLS];
 struct heap *next;
} heap;

 8

+-----+-----+
| CAR | CDR |
+-----+-----+

The PicoLisp reference says:

1. A cell is a pair of machine words, which traditionally are called CAR and CDR in the Lisp terminology.

2. These words can represent either a numeric value (scalar) or the address of another cell (pointer).

3. All higher level data structures are built out of cells.

// src/pico.h
typedef struct cell {
 struct cell *car;
 struct cell *cdr;
} cell, *any;

Yes, two identical types

Yes, can store identical values

Yes, cells are everywhere

// src/pico.h
typedef struct heap {
 cell cells[CELLS];
 struct heap *next;
} heap;

 cell
 |
 +-----------+-----------+
 | | |
 Number Symbol Pair
 |
 |
 +--------+-----------+-----------+
 | | | |
 NIL Internal Transient External

Cells in heap under
full control by GC

 9

Fundamental overview

LIST

 10

 cell
 |
 +-----------+-----------+
 | | |
 Number Symbol Pair
 |
 |
 +--------+-----------+-----------+
 | | | |
 NIL Internal Transient External

A list is not part of data type hierarchy.

 11

 cell
 |
 +-----------+-----------+
 | | |
 Number Symbol Pair
 |
 |
 +--------+-----------+-----------+
 | | | |
 NIL Internal Transient External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs), holding
numbers, symbols, or cons pairs.

 |
 V
 +-----+-----+
 | any | | |
 +-----+--+--+
 |
 V
 +-----+-----+
 | any | | |
 +-----+--+--+
 |
 V
 ...

 12

 cell
 |
 +-----------+-----------+
 | | |
 Number Symbol Pair
 |
 |
 +--------+-----------+-----------+
 | | | |
 NIL Internal Transient External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs), holding
numbers, symbols, or cons pairs.

CAR CDR

 13

 cell
 |
 +-----------+-----------+
 | | |
 Number Symbol Pair
 |
 |
 +--------+-----------+-----------+
 | | | |
 NIL Internal Transient External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs), holding
numbers, symbols, or cons pairs.

List is like wagon train

 14

 cell
 |
 +-----------+-----------+
 | | |
 Number Symbol Pair
 |
 |
 +--------+-----------+-----------+
 | | | |
 NIL Internal Transient External

The PicoLisp reference provides recursive definition:

A list is a sequence of one or more cells (cons pairs),
holding numbers, symbols, or cons pairs.

Remember!

+---+---+ +---+---+
| 1 | --+--->| 2 |---+---> NIL
+---+---+ +---+---+

+---+---+
| 1 | 2 |
+---+---+

This is a list
if CDR of last cell

points to NIL

If atom in CDR then this is a dotted pair

 15

Construct and view

 16

$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
:

 17

$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
:

CONStruct a cell or sequence of cells are straightforward.

 18

$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
:

Construct a cell or sequence of cells are straightforward.

Function view will help understand cell structure:

: (cons 1 2)
-> (1 . 2)
: (view @)
+-- 1
|
2
-> 2
:

 19

$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
:

Construct a cell or sequence of cells are straightforward.

Function view will help understand cell structure:

: (cons 1 2)
-> (1 . 2)
: (view @)
+-- 1
|
2
-> 2

Legend:
+ is CELL
- is CAR
| is CDR

: (cons 1 2 3)
-> (1 2 . 3)
: (view @)
+-- 1
|
+-- 2
|
3
-> 3
: (list 1 2 3)
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL

 20

$ pil +
: (cons 1 2)
-> (1 . 2)
: (cons 1 2 3)
-> (1 2 . 3)
: (list 1 2 3)
-> (1 2 3)
:

Construct a cell or sequence of cells are straightforward.

Function view will help understand cell structure:

: (cons 1 2)
-> (1 . 2)
: (view @)
+-- 1
|
2
-> 2
: (cons 1 2 3)
-> (1 2 . 3)
: (view @)
+-- 1
|
+-- 2
|
3
-> 3
: (list 1 2 3)
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL

After practice you will manipulate and view structures in mind.
Nothing special, right?

Legend:
+ is CELL
- is CAR
| is CDR

 21

Modify CAR

 22

The PicoLisp reference for function set says:

(set 'var 'any ..) -> any

Stores new values any in the var arguments.
See also setq, val, swap, con and def.
: (set 'L '(a b c) (cdr L) 999)
-> 999
: L
-> (a 999 c) Variable: Either a symbol

or a cons pair

http://software-lab.de/doc/refS.html#setq
http://software-lab.de/doc/refV.html#val
http://software-lab.de/doc/refS.html#swap
http://software-lab.de/doc/refC.html#con
http://software-lab.de/doc/refD.html#def

 23

The PicoLisp reference for function set says:

(set 'var 'any ..) -> any

Stores new values any in the var arguments.
See also setq, val, swap, con and def.
: (set 'L '(a b c) (cdr L) 999)
-> 999
: L
-> (a 999 c)

In case of cell it modify CAR:

$ pil +
: (set 'L (cons 1 2))
-> (1 . 2)
: (set L 3)
-> 3
: L
-> (3 . 2)
: (set L (cons 1 2))
-> (1 . 2)
: L
-> ((1 . 2) . 2)

http://software-lab.de/doc/refS.html#setq
http://software-lab.de/doc/refV.html#val
http://software-lab.de/doc/refS.html#swap
http://software-lab.de/doc/refC.html#con
http://software-lab.de/doc/refD.html#def

 24

Modify CDR

 25

The PicoLisp reference for function con says:
(con 'lst 'any) -> any

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc.
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc

 26

Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says:

(con 'lst 'any) -> any

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc.
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc

 27

Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says:

(con 'lst 'any) -> any

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc.
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

: (set 'L (list 1 2 3))
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL
: (con L 22)
-> 22
: (view L)
+-- 1
|
22
-> 22

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc

 28

Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says:

(con 'lst 'any) -> any

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc.
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

: (set 'L (list 1 2 3))
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL
: (con L 22)
-> 22
: (view L)
+-- 1
|
22
-> 22

Access path to two wagons is lost
and they will be GC eventually

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc

 29

Remember:
o) modify CDR of dotted pair is just modification
o) modify CDR of list is DESTRUCTIVENESS of sequence

The PicoLisp reference for function con says:

(con 'lst 'any) -> any

Connects any to the first cell of lst, by (destructively) storing any in the CDR of lst.
See also set and conc.
: (setq C (1 . a))
-> (1 . a)
: (con C '(b c d))
-> (b c d)
: C
-> (1 b c d)

: (set 'L (cons 1 2))
-> (1 . 2)
: (con L 22)
-> 22
: L
-> (1 . 22)

: (set 'L (list 1 2 3))
-> (1 2 3)
: (view @)
+-- 1
|
+-- 2
|
+-- 3
-> NIL
: (con L 22)
-> 22
: (view L)
+-- 1
|
22
-> 22

Any destructive functions behaves the same way.
No dark corners anymore.

http://software-lab.de/doc/refS.html#set
http://software-lab.de/doc/refC.html#conc

 30

Now you have everything to understand listing of destructive function chain:

$ pil +
: (make (link 1 2) (view (made)) (chain 3) (view (made)))
+-- 1
|
+-- 2
+-- 1
|
+-- 2
|
3
-> (1 2 . 3)
: (make (link 1 2) (view (made)) (chain (cons 3)) (view (made)))
+-- 1
|
+-- 2
+-- 1
|
+-- 2
|
+-- 3
-> (1 2 3)

 31

Happy coding!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

